Integration of an AI engine for content-based image retrieval in a radiological image database

Thibault SAURON^{1,3}, Florence CLOPPET¹, Camille KURTZ¹, Antoine OLIVIER², Laure FOURNIER³ 1: LIPADE, Université Paris Cité, Paris, France 2: PHILIPS Research France 3 : Hôpital Européen Georges Pompidou

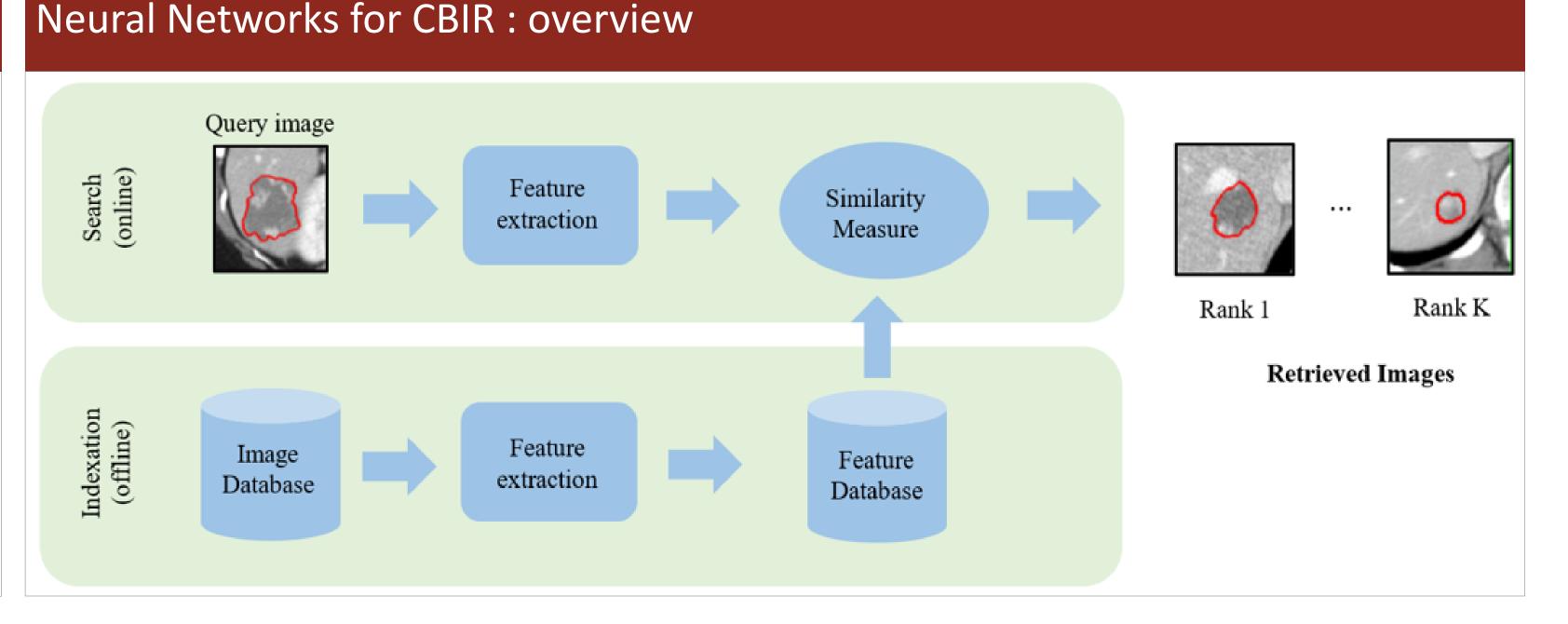
Context

PACS (Picture Archiving and Communication Systems) are the database systems used in hospitals to store, edit and retrieve patient information

> The goal is to perform CBIR (Content Based Image Retrieval) on those PACS to allow query by example to be performed in clinical routines

Constraints :

- Multi sequence images
- Metric is visual similarity
- Lack of annotated data



Leveraging patient information for unsupervised multi-sequence Contrastive training

Contrastive learning principles :

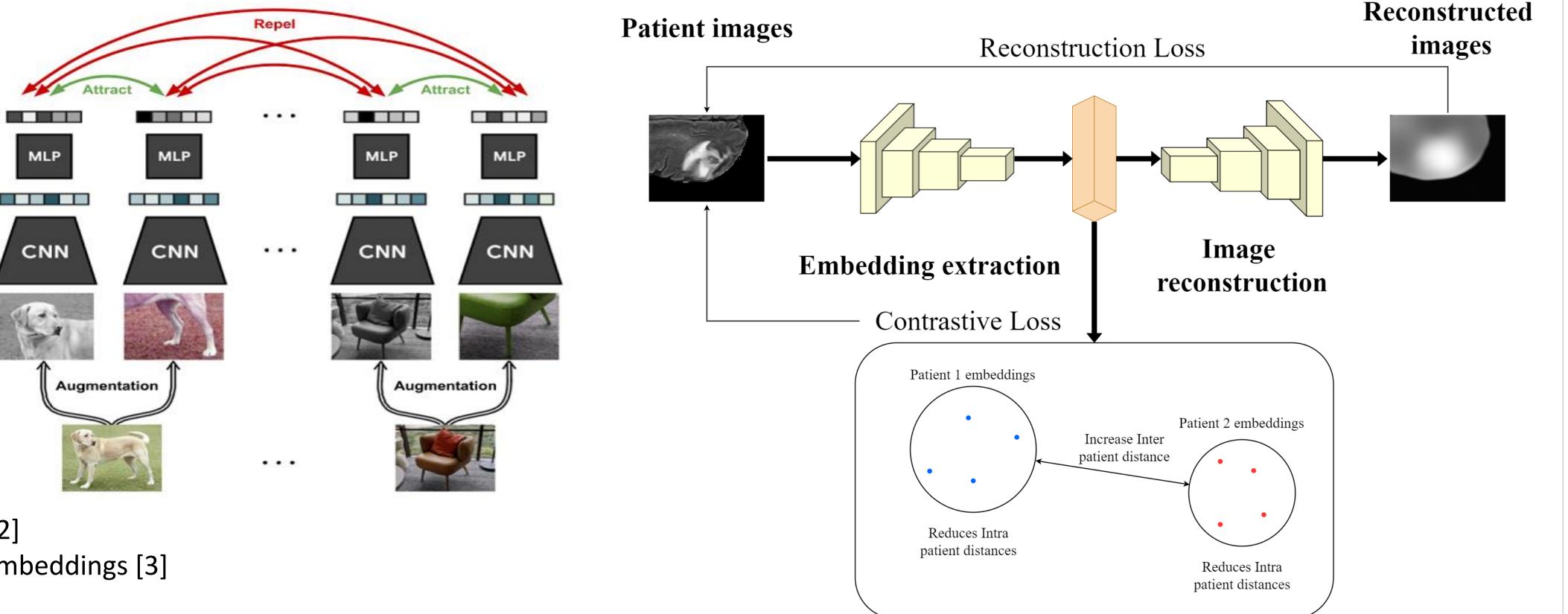
- > Pulling closer together in the latent space the positives examples
- > Pushing apart the negatives examples
- > Positives can be hard annotation or different view of the same image (SIMCLR [1])

Contrastive learning advantages :

> Well suited for **multi sequence** tasks, we can consider every MR image to be a different sequence > Adapts well to unsupervised tasks

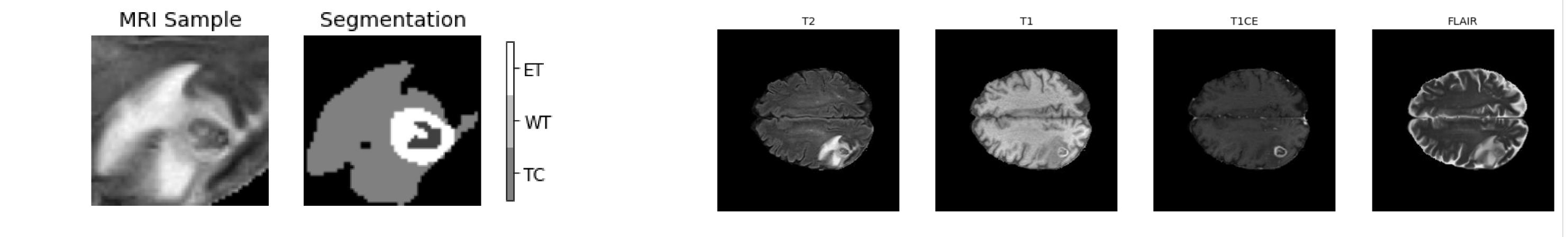
Training strategy :

Considering every parametric MR image as a positive sample from a patient in the supervised contrastive setting [2] > Adding a visual reconstruction path from the contrastive embeddings [3]



Dataset : RSNA-ASNR-MICCAI Brain Tumor Segmentation (BraTS) Challenge 2021 [4]

> Dataset is a mpMRI segmentation dataset of brain glioblastoma split in 3 sub-regions : > 4 MRI parameters : T2, T1, T1CE, FLAIR the "enhancing tumor" (ET), the "tumor core" (TC), and the "whole tumor" (WT)



Evaluation strategy and results

Assessing visual similarity

- > Using combination of standard image metrics to compute a visual distance between two images
- > Using **nDCG** as the metric for retrieval evaluation to take the rank into account :

> $nDCG@n = \frac{DCG@n}{iDCG@n}$ DCG@n = $\sum_{i=1}^{n} \frac{rel(i)}{\log(1+i)}$ iDCG is best score possible,

> We used IOU, gray histogram distances and GFD distances as relevance function

Training

+ +

Network	Score (nDCG@ 5,10,20)	
Resnet18 trained from scratch	0.7587, 0.7287, 0.718	
Resnet18 pretrained, small batch size	0.7704, 0.7351, 0.7215	
Resnet18 pretrained, big batch size	0.7804, 0.7462*, 0.7336*	
Resnet18 pretrained with image augmentation	0.7902, 0.7412, 0.7389	
Resnet18 pretrained with reconstruction loss	0.7964*, 0.7451, 0.7198	

Perspectives

- > Testing different images augmentation and their impact, using the whole brain volume instead of only the best slice
- > Weighting the contrastive and the reconstruction loss, improving the reconstruction loss
- > Training separate neural networks for every MR sequence

> Using another database [6] with annotations more suited to the evaluation task and closer to the real-world

 Using Resnet18 [5] as images are not to complex Testing different training variants to assess the impact of each isolated 	Resnet 18 pretrained on imagenet, no retraining	0.7882, 0.7406, 0.7254	scenario. However this database is not yet anonymized , sufficiently annotated and curated .
change	Random	0.41444, 0.4392, 0.47198	
> Networks are trained on the best slice of the volume			

References

[1] T. Chen, et al., "A Simple Framework for Contrastive Learning of Visual Representations", arXiv:2002.05709, 2020

[2] A. Maschinot, et al., "Supervised Contrastive Learning", arXiv:2004.11362, 2021

[3] K. Kobayashi, et al., "Decomposing normal and abnormal features of medical images for content-based image retrieval of glioma imaging", MIA, 2021

[4] U.Baid, et al., "The RSNA-ASNR-MICCAI BraTS 2021 Benchmark on Brain Tumor Segmentation and Radiogenomic Classification", arXiv:2107.02314, 2021

[5] K. He, et al., "Deep Residual Learning for Image Recognition", CVPR, 2015

[6] I. Thomassin-Naggara et al. "Ovarian-Adnexal Reporting Data System Magnetic Resonance Imaging (O-RADS MRI) score for risk stratification of sonographically indeterminate adnexal masses", JAMA network open 1, 2020

