
Integration of an AI engine for content-based image retrieval 
in a radiological image database

Context

➢ PACS (Picture Archiving and Communication Systems) are the database systems used in
hospitals to store, edit and retrieve patient information

➢ The goal is to perform CBIR (Content Based Image Retrieval) on those PACS to allow
query by example to be performed in clinical routines

Constraints :
➢ Multi sequence images
➢ Metric is visual similarity
➢ Lack of annotated data

Evaluation strategy and results

Assessing visual similarity
➢ Using combination of standard image metrics to compute a visual distance

between two images
➢ Using nDCG as the metric for retrieval evaluation to take the rank into

account :

➢ 𝑛𝐷𝐶𝐺@𝑛 =
𝐷𝐶𝐺@𝑛

𝑖𝐷𝐶𝐺@𝑛
DCG@n = σ𝑖=1

𝑛 𝑟𝑒𝑙(𝑖)

log(1+𝑖)
iDCG is best score possible,

➢ We used IOU, gray histogram distances and GFD distances as relevance
function

Training
➢ Using Resnet18 [5] as images are not to complex
➢ Testing different training variants to assess the impact of each isolated

change
➢ Networks are trained on the best slice of the volume
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Neural Networks for CBIR : overview

Dataset : RSNA-ASNR-MICCAI Brain Tumor Segmentation (BraTS) Challenge 2021 [4]

➢ Dataset is a mpMRI segmentation dataset of brain glioblastoma split in 3 sub-regions :
the "enhancing tumor" (ET), the "tumor core“ (TC), and the "whole tumor" (WT)

Network
Score (nDCG@ 

5,10,20)
Resnet18 trained from

scratch
0.7587, 0.7287, 0.718

Resnet18 pretrained, small

batch size
0.7704, 0.7351, 0.7215

Resnet18 pretrained, big 

batch size
0.7804, 0.7462*, 0.7336*

Resnet18 pretrained with

image augmentation
0.7902, 0.7412, 0.7389

Resnet18 pretrained with

reconstruction loss
0.7964*, 0.7451, 0.7198

Resnet 18 pretrained on 

imagenet, no retraining
0.7882, 0.7406, 0.7254

Random 0.41444, 0.4392, 0.47198

Perspectives

➢ Testing different images augmentation and their impact,
using the whole brain volume instead of only the best
slice

➢ Weighting the contrastive and the reconstruction loss,
improving the reconstruction loss

➢ Training separate neural networks for every MR sequence

➢ Using another database [6] with annotations more suited
to the evaluation task and closer to the real-world
scenario. However this database is not yet anonymized,
sufficiently annotated and curated.

➢ 4 MRI parameters : T2, T1, T1CE, FLAIR

Leveraging patient information for unsupervised multi-sequence Contrastive training

Contrastive learning principles :
➢ Pulling closer together in the latent space the
positives examples
➢ Pushing apart the negatives examples
➢ Positives can be hard annotation or different view
of the same image (SIMCLR [1])

Contrastive learning advantages :
➢ Well suited for multi sequence tasks, we can
consider every MR image to be a different sequence
➢ Adapts well to unsupervised tasks

Training strategy :
➢ Considering every parametric MR image as a positive
sample from a patient in the supervised contrastive setting [2]
➢ Adding a visual reconstruction path from the contrastive embeddings [3]


