Security and Trust for Wireless Integrated Circuits

<u>Alán Rodrigo Díaz Rizo</u> Hassan Aboushady, Haralampos-G. Stratigopoulos

Journée de l'EDITE 2022

Outline

- supply chain
- Security threats: piracy and hardware Trojans
- The thesis is focused on RF transceivers:
 - Part I: Anti-piracy design
 - > MixLock
 - SyncLock

• Origin of hardware security threats: globalized Integrated Circuit (IC)

Part II: Hardware Trojan-enabled covert communication channel

IC Supply Chain Before 1980s

- Technology was simple
- Production costs were low

Design, manufacture, test, packaging, assembly were in-house

IC Supply Chain Today

Massively globalized

• Fabless companies

Outsourcing IC production

• Companies share their IP with third entities (foundries, SoC integrators, IP brokers, etc.)

Part I: Piracy

3PIP sells license for 1 SoC

CLONING: SoC integrator reuses IP in >1 SoCs

CLONING: SoC integrator reuses IP in >1 SoCs

OVERPRODUCTION: Foundry overproduces >N chips

SCIENCES SORBONNE UNIVERSITÉ A. R. Díaz Rizo 6

IP/IC Piracy Facts

\$100 billion Global revenue loss ^{1,2}

- 1% of semiconductor sales are counterfeit ICs ^{1,2}
- 25% of reported incidents concern analog ICs ^{1,2}
- Supply chain attacks increased 4 times from 2020 to 2022³
- Reverse engineering of ICs is affordable to many crime groups and governments ⁴
- EU Chips Act: proposes support for innovative start-ups and certification procedures for trusted chips to guarantee quality and security for critical applications ⁵
- France: Acceleration of cybersecurity is a strategic planning for the coming years ⁶:

Government	Industry	Society & Consumers		
 National security Lost tax revenue Costs of law enforcement 	 Revenue loss Loss of brand value Costs to mitigate the risk 	 Lower quality of counterfeit parts Costs to replace failed products Safety concerns 		

[1] USDC & USDHS, https://www.dhs.gov/publication/assessment-critical-supply-chains-supporting-us-ict-industry [2] SEMI, https://www.nanotech-now.com/news.cgi?story_id=29151&utm_source=Nanotechnology+Now [3] ENISA, https://www.enisa.europa.eu/publications/threat-landscape-for-supply-chain-attacks [4] Sem Eng., https://semiengineering.com/why-its-so-difficult-and-costly-to-secure-chips/ [5] European Union Chips Act Factsheet 2022, https://digital-strategy.ec.europa.eu/en/library/european-chips-act-factsheet [6] <u>https://www.economie.gouv.fr/strategie-nationale-acceleration-cybersecurite#</u>

11

Piracy Countermeasures

Countermeasure	Security Threat						
	Cloning by SoC integrator	Cloning by foundry	Cloning by end user	Over- producing	Remarking	Recycli	
Locking							
Camouflaging ¹							
Split manufacturing ²							
Age and performance monitoring ³							

- ¹ J. Leonhard *et al.*, TCAD'21
- ² T. D. Perez and S. Pagliarini, IEEE Access'20
- ³ K. Huang *et al.*, TCAD'15

Logic Locking for Digital ICs

- Logic locking modifies the digital IC by adding new logic (key-gates) controlled by key-bits (e.g., k_1 , k_2).
- Different logic locking techniques use different approaches for key-bit insertion, e.g., XOR/XNOR insertion in Random Logic Locking

MixLock: Digitally-Assisted Security

- Locking mixed-signal ICs via logic locking of their digital section
- Incorrect keys break mixed-signal performance at system level
- Apply lock in the signal path
- Widely applicable

J. Leonhard et al., DATE'19 J. Leonhard *et al.*, TCAD'22 A. R Diaz-Rizo et al., TCAS-II'22

Security and Trust for Wireless Integrated Circuits

Part I: piracy

Measured Locking Efficiency on bladeRF Board

Security and Trust for Wireless Integrated Circuits

Part I: piracy

A Brief History of Logic Locking

Security and Trust for Wireless Integrated Circuits

SyncLock: Synchronization-Based Locking for RF Transceivers

- Hard-coded error encrypting synchronization sequence
- Any incorrect key breaks the communication link

Part I: piracy

nization sequence ication link

A. R. Diaz-Rizo et al., TCAS-I'22

• Transmission frame of the WiFi (IEEE 802.11):

SyncLock Mechanism

• Transmission frame of the WiFi (IEEE 802.11):

- decryption and encryption are implemented with XOR-based ciphers
- System equation: $STS_{out} = (STS_{nom} \oplus key) \oplus f(key_{h-c}, STS_{out})$
- $f(\cdot)$ can be any nonlinear function, e.g., $f(\cdot) = \text{circular-shift}(\text{key}_{h-c} \oplus \text{STS}_{out})$
- Correct key satisfying equation is: key = $f(\text{key}_{h-c}, \text{STS}_{nom})$

Modified frame generation block

Locking mechanism is composed of two blocks spatially separated, decryption and encryption

Measured Locking Efficiency on bladeRF Board QPSK 16-QAM

- bladeRF board from Nuand^{TM 1, 2}

Security and Trust for Wireless Integrated Circuits

Part I: piracy

Demonstrated in hardware using the Software Defined Radio (SDR)

IEEE 802.11 Wi-Fi RF transceiver with a direct conversion AFE architecture for both the receiver and the transmitter

Attributes: non-intrusive, <<1% area overhead, negligible power overhead, 512 effective key-bits, any invalid key results in maximum BER

> [1] Nuand, "SDR bladeRF 2.0 micro xA9," https://bit.ly/3z2QV1N, Online. [2] Nuand, "Open-source IEEE 802.11 compatible software defined radio VHDL modem

21

Part II: Hardware Trojans

Hardware Trojan Threat

- Malicious modification of a circuit
- Hardware Trojan (HT) design:
 - Triggering mechanism (always on, rare condition is met, etc.)
 - Payload mechanism (effect):
 - Changing the function
 - Degrading performances
 - Leaking information (cryptographic keys)
 - Denial-of-service
- Attacker's goal: stealthy, small footprint
- Defender's goal: prevention, detection

RF Hardware Trojans: Short vs. Long Distance

Side-Channel Trojan (SCT) (L. Lin *et al.*, CHES'09)

Covert communication channel (N. Kiyavash *et al.*, TIFS'13, Dutta *et al.*, Information Hiding'13, J. Classen et al., CNS'15, K. S. Subramani *et al.*, TIFS'19, Y. Jin and Y. Makris, D&T'10, Y. Liu *et al.*, TVLSI'17, K. S. Subramani et al., TIFS'20, S. Chang et al., TODAES'20, K. Sankhe et al., MILCOM'19)

Covert Communication Channel via the Preamble of Transmitted Frames

Part II: Hardware Trojan

- STS field is used for detecting the start of the frame (synchronization)
- Information bits (i.e. cypher key) are leaked through STS
- Synchronization is not affected

A. R. Diaz-Rizo *et al.*, TDSC'22

Can Alice (Tx) and Bob (Rx) Detect the Hardware Trojan?

- Alice (Tx) and Bob (Rx) can perform:
 - Standard measurements: spectral mask, EVM, BER, etc.
 - Specialized measurements: Statistical Side-Channel Fingerprinting (SSCF), STS measurements, Adaptive Channel Estimation (ACE)
- All measurements performed on the bladeRF board from Nuand[™]

Standard Measurements

Transmission Power (dB)

Security and Trust for Wireless Integrated Circuits

- No performance penalty
- HT undetectable for $\alpha \leq 15\%$

27

Conclusion

- Protect the precious IP of designs against piracy is paramount 2 anti-piracy design techniques for RF transceivers
- - MixLock

 - Locking methodology of RF transceivers based on logic locking > Uses a generic state-of-the-art logic locking technique > Problem is that a counter-attack is likely to be developed
 - SyncLock
 - > Novel domain-specific logic locking technique for RF transceivers
 - Resilient to any known attack
- HT-infected ICs can leak sensitive information
 - Leaking Wireless ICs via HT-infected synchronization > Novel covert communication channel Undetectable by all known test-based and run-time defenses
 - > We need new defenses and security-aware wireless standards

Thank you for your attention! Questions?

alan-rodrigo.diaz-rizo@lip6.fr

MixLock Summary

- Generally applicable to any RF transceiver
- State-of-the-art logic locking can be used
- Implementation overhead DCO-IQI correction block:
 - 3.9% area, 0.3% power consumption (negligible overheads for entire RF transceiver)
- No performance penalty
- Fully automated
- No alterations in mixed-signal design flow SFLL-rem is vulnerable to attacks on logic locking*

*Z. Han et al., USENIX'21

SyncLock Summary

- Generally applicable to any RF transceiver
- First domain-specific logic locking
- No performance penalty
- Tiny overhead, negligible extra power consumption
- Plug-in IP
- No alterations in mixed-signal design flow
- Effective 512-bit key
- Only one valid key
- Resilient to all known attacks
- Patent filed in October 2022

Leaking Wireless ICs via Hardware Trojan-Infected Synchronization: Summary

- HT leaks data through the synchronization sequence
- Undetectable for inconspicuous receiver
- Generally applicable to any RF transceiver
- Small HT footprint: 0.109% of PHY area
- Undetectable by all known test-based and run-time defenses
- Throughput = 8 bits*number of frames per second = 750 Kbps (indicative for short control frames such as ACK and CTS)

