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1 Background

Clustering is the task of partitioning a dataset in a meaningful way, such that similar data elements are
in the same part and dissimilar ones in different parts. Clustering problems are among the most studied
problems in theoretical computer science. Clustering applications range from data analysis [JSB12]
to compression [Llo82], and this has given raise to several different ways of modeling the problem.
The k-median and k-means problems are among the most prominent clustering objectives: algorithmic
solutions to these problems are now part of the basic data analysis toolbox, and used as subroutines for
many machine learning procedures [LW09; CNL11; CN12]. Furthermore, k-median and k-means have
deep connections with other classical optimization problems, and understanding their complexity has
been a fruitful research direction: Their study has led to many interesting algorithmic development (for
instance for primal-dual algorithms [JV01; LS13; BPRST15] or local-search based ones [CGHOS22;
CGLS23]).

Given a metric space (X,dist), and two sets P,C ⊆ X, the goal of the k-median problem (respectively
k-means problem) is to find a set of k centers S ⊂ Ck in order to minimize the sum of distances (resp.
distances squared) for each point in P to its closest center in S:

cost(P,S) =
∑
p∈P

min
s∈S

distz(p,S),

where z = 1 for k-median and z = 2 for k-means.

Those two problems are generalizations of the standard median and mean: instead of summarizing
the whole dataset with a single point, it allows to have different clusters, each represented by its
median or mean. Finding the best clustering should therefore provide a good representation of the
data, more precisely than with a single median or mean. The k-median and k-means problems are
therefore naturally part of the basic data-analysis toolbox, and are used as building blocks of many
machine learning procedures.

However, they are hard to solve in most cases: they are NP-hard, even in very cases. For instance,
they are NP-hard when the data merely consists of points lying in the Euclidean plane [MNV12;
MS84], or when k = 2 [DF09]. Hence, even in low-dimensional Euclidean spaces, one has to resign
itself to computing only approximate solutions.

In this thesis, our general goal is to develop algorithms that provably compute good solutions to those
problems. We aim at dealing with big data, in complex spaces.

First Part: Fast Algorithms via Embedding into Trees. In the first part of the thesis, we
consider the following question:
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Question 1. Is there some metric space where it is possible to solve k-median and k-means in near-
linear time?

Besides the big data motivation, this question is interesting in its own right, as understanding the
complexity and the structure of the problems is an attractive mathematical question. Since the
problems are NP-hard even in very restricted metric spaces such as the Euclidean plane, we will
target approximation schemes, namely, design an algorithm that compute a solution with cost at most
(1 + ε) times the optimal cost, for any fixed ε > 0.

We answer this question in low-dimensional Euclidean spaces, and a generalization of those called
doubling metrics.1 Studying the problem with that angle allows us to get insight that can be used in
other settings as well. In particular, in the so-called Differential Privacy model.

This is a key application for clustering: as data collection appears everywhere in our lives, people
and more generally democracies are concerned with the effect of data analysis can have on privacy.
Laws are now enforcing companies to respect some privacy principles while collecting and analyzing
data: hence, it becomes necessary to develop data analysis algorithms that respect in some sense the
privacy of users. This has been modeled by the notion of Differential Privacy, that we explore via the
embedding into ultrametrics. It turns out that the techniques we introduce are particularly suited to
that privacy model. We show and experiment a practical private algorithm for clustering that enjoys
provable guarantees.

Second Part: Sketching, and Coping with Big Data The other theme of this thesis is to find
compression schemes for clustering. Datasets are in many practical cases too large to be processed
conventionally, as the data simply does not fit into one computer’s memory. Henceforth, sketching,
compression, and summarization techniques are at the heart of modern data analysis. This has led to
new algorithms operating in other models of computation such as streaming, distributed computing or
massively-parallel computation (MPC). For these algorithms, finding good small-size representations
– also called sketches – of the input data is key.

The main sketch we study in this thesis is called coreset. Given ε > 0, a (weighted) set Ω is an
ε-coreset for P if for any set of k centers S, cost(Ω,S) = (1±ε)cost(P,S). In other words, Ω preserves
approximately the cost function.

Computing small coreset has numerous advantages. First, reducing the size of the input may allow to
reinstate the “traditional” algorithms, that are already well analyzed and understood. Second, coreset
can be used in settings where there are additional constraints on the memory usage of algorithms: for
instance, when the input cannot fit in a single machine and is distributed among several of them, those
can merely exchange coresets to communicate their data. This has small size compared to the full
input and consequently can be stored and processed in a single machine, instead of the full dataset.

Question 2. What are the best coreset size possible, for k-median and k-means? What particular
structure on the metric space is useful to construct small coreset?

2 State of the Art

Approximation Algorithms fig. 1 summarizes the current state of our knowledge in terms of
polynomial-time approximability: we say that a solution S is an α-approximation if its cost is at most
α times the cost of the optimal solution.

1The doubling dimension of a metric space is d when any ball of radius R can be covered with 2d balls of radius R/2.
Doubling metrics are ones with bounded doubling dimension. This generalizes Euclidean space, as the space (Rd, ℓ2) has
doubling dimension Θ(d).
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Discrete Discrete Euclidean Euclidean
k-median k-means k-median k-means

Lower bound 1 + 2/e [GK99] 1 + 8/e [GK99] 1.06 [CSL22] 1.015 [CSL22]
Upper bound 2.675 [BPRAT15] 6.36 [ANFSW17] 2.41 [CEMN22] 5.96 [CEMN22]

Figure 1: Approximability of k-median and k-means. The lower-bounds are conditioned on the
assumption P ̸= NP.

Hence, if one wishes to have a polynomial-time algorithm with very good approximation guarantee
for (k, z)-clustering, it is necessary to make some assumption on the input data. For instance, there
are polynomial approximation schemes in Euclidean spaces of fixed dimensions (see [KR07; CKM19;
FRS19]). Here, by polynomial time we mean |P |f(d,ε) for some function f , as ε and d are considered
to be fixed. A standard generalization of the Euclidean dimension that abstracts out a lot of the
geometry and allows us to focus on the most crucial properties is called the doubling dimension, that
we alreay mentioned. In case of bounded doubling dimension, [FRS19] showed how to compute a
(1 + ε)-approximation in time |P |f(d,ε).
Nonetheless, obtaining an efficient approximation scheme (namely a (1 + ε)-approximation algorithm
running in time f(ε, d)poly(n)) for k-Median and k-Means in Euclidean space, or more generally
metrics of doubling dimension d has remained a major challenge.

For clustering with privacy constraints, the state-of-the art results have the a multiplicative approximation
factor that matches the one of non-private algorithms (See [GKM20]). However, those algorithms suffer
from a large additive error, are far from being practical and even hardly implementable. On the other
hand, state-of-the-art implementations either have no theoretical guarantees on the quality of the
solution obtained, or cannot be implemented in large-scale scenario where the data is distributed. In
contrast, we present a parallel implementation of the algorithm, and we show experimentally that its
performances are comparable to the best non-private methods.

A Brief History of Coreset for Clustering. The study of coreset for clustering started with
the work of [HM04]. They gave a construction based on snapping points to a grid of the space.
This is specifically tailored to Euclidean spaces, and has a prohibited exponential dependency in the
dimension. The first breakthrough is due to Chen [Che09], who introduced sampling in the coreset
toolbox, and managed to show the construction of coresets of size O(k2ε−2 log2 n) for discrete n points
metric spaces, and size O(k2dε−2 log n) in Euclidean space. Notably, the dependency in the dimension
is merely linear.

The state-of-the-art analysis relies on a VC-dimension type complexity measure: [FL11] presented a
way of constructing coresets with a size bounded by this dimension. While this technique provided
many strong result in various metric spaces, tighter bounds are often achievable. For instance, in
d dimensional Euclidean spaces this would yield coresets of size Oε,z(k

2 · d log2 k), but [HV20] and
[BJKW21] showed the existence of a coreset with O(k · log2 k · ε−2z−2) points. This VC-dimension
based analysis was proven powerful in various metric spaces, such as doubling spaces by [HJLW18],
graphs of bounded treewidth by [BBHJKW20] or the shortest-path metric of a graph excluding a
fixed minor [BJKW21]. However, range spaces of even heavily constrained metrics do not necessarily
have small VC-dimension (e.g. bounded doubling dimension does not imply bounded VC-dimension
or vice versa [HJLW18; LL06]), and applying previous techniques requires heavy additional machinery
to adapt the VC-dimension approach to them. Moreover, the bounds provided are far from the bound
obtained for Euclidean spaces: their dependency in k is at least Ω(k2), leaving a significant gap to the
best lower bounds of Ω(k).
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3 Contributions

To answer question 1, we present an approximation scheme for (k, z)-Clustering in Euclidean spaces,
namely an algorithm that computes a (1 + ε)-approximation to the problem. For any fixed ε and
dimension, this algorithm runs in near-linear time – i.e., even faster than assigning naively each point
to the closest center, which takes time nk. This is based on a joint work with Vincent Cohen-Addad
and Andreas Feldmann [CFS21], that appeared in the Journal of the ACM.

The algorithm we propose is based on embedding the input in a tree-like structure. As mentioned
above, this is helpful to get algorithm that respect some form of privacy. Indeed, we manage to apply
those techniques to get a private algorithm for k-median and k-means with provable approximation
guarantee. This chapter is more oriented towards practice: we present a scalable algorithm, able to run
in a distributed setting. In particular, we implemented the algorithm and showed its practical efficiency
both in terms of speed and quality of the computed solution. This is based on a collaboration with
Vincent Cohen-Addad, Alessandro Epasto, Silvio Lattanzi, Vahab Mirrokni, Andres Munoz, Chris
Schwiegelshohn and Sergei Vassilvitskii, that was presented at the conference KDD 22 [CELMMSSV22].

To answer question 2, we present a very generic coreset construction, showing the existence of small
coresets under a specific assumption. We then show that this assumption holds in many different
metric spaces, resulting in state of the art coreset construction. For discrete metrics, we present
coreset of size essentially O(ε−2k log n). For metrics of doubling dimension d, we show coreset of size
O(ε−2kd). The Euclidean space Rd is known to have doubling dimension Θ(d): the result carries
over. It can be further improved using standard dimension reduction techniques: it is possible to
replace the dependency in d by O(ε−2 log k). We also show that metrics induced by graphs with
small separators have small centroid set: namely, metric induced by graph of bounded treewidth or
excluding a minor. In all those case, the dependency in k, the dimension or the treewidth is optimal.
Those results are based on an article published at STOC 2021 with Vincent Cohen-Addad and Chris
Schwiegelshohn [CSS21a].

We then show that our construction for discrete and doubling metrics are tight: there exist a family
of discrete metric space such that any coreset on those must have size at least Ω(ε−2k log n). This
completes nicely our understanding of coreset for those spaces: upper and lower bounds are tight.
This result is part of a joint work with Vincent Cohen-Addad, Kasper Green Larsen and Chris
Schwiegelshohn [CLSS22], that was presented at STOC 2022.

We also present a different coreset construction, that allows for deterministic coresets – which can
be then applied to get deterministic (1 + ε)-approximation. The previous coreset constructions are
randomized, and succeed with probability 1− δ. However, it is co-NP hard to verify that the outcome
of a randomized coreset construction is indeed a valid coreset [SS22]: hence, determinism may be a
desirable property. We present such coresets construction for various metric spaces.

In particular, to achieve deterministic bounds similar to the randomized one in Euclidean spaces, one
needs to remove any dependency on the dimension d: one of the technical ingredients of the chapter is
to show deterministic dimension reduction for clustering. This is of independent interest, and provides
another way of sketching Euclidean input. This is a collaboration with Vincent Cohen-Addad and
Chris Schwiegelshohn, currently under submission [CSS].

Finally, we show how to use the coreset knowledge developed previously to construct algorithms
running in sublinear time to compute the median, the mean and more generally an approximation
to (1, z)-clustering. We show that it is enough to consider a constant number of input point drawn
uniformly at random to compute this solution, and implement our algorithm to show the practical
speed-up it allows. This chapter is based on a work that was presented as a spotlight at NeurIPS
2021, with Vincent Cohen-Addad and Chris Schwiegelshohn [CSS21b].
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