Fairness is not just about **data:** two models trained on the same data may be **fair** or **may not**.

We propose a **new way** to **analyze** and **measure** algorithmic fairness that goes **beyond predictive performance**.

IFAFAM: Individual Feature Algorithmic Fairness Analysis Method applied on predicting students' performance

Mélina Verger¹, Vanda Luengo¹, Francois Bouchet¹, Sébastien Lallé¹ ¹ MOCAH team, Sorbonne University, CNRS, LIP6 image: Constant Structure Struct

Motivation

Increasing need for algorithmic fairness analysis and quantification

Lack of **sensitive features discovery** – from what is learned from the models

Proliferation of *performance-oriented* fairness metrics and *performance-oriented* analysis approaches

IFAFAM (contribution)

General necessary steps * prediction probabilities (PP) retrieval * sensitive-feature subset reduction

Qualitative analysis * smoothing of PP distributions * visual identification of unequal treatment

and stereotypical judgement

Quantitative analysis

* a new way to measure algorithmic unfairness: the mean absolute density distance (MADD)

MADD (MAE-like but on density, model-independent)

$$rac{1}{N}\sum_{i=1}^{N}|d_i-d_i'|$$

N: total number of density observations d_i : density value related to the prediction probability p_i of one group d'_i : same as d_i but for the other group

Experimental validation :

- * on several educational datasets and several binary classifier models (cross-tables) that predict students' success to courses
- * comparison with existing fairness metrics (ABROCA, DI, TPR, ...)

Discussion

- * binary sensitive features
- * supervised-learning oriented
 * for any tabular data without preprocessing

1

2

3

