Seasonal semi-supervised domain adaptation for linking population studies and Local Climate Zones

Basile Rousse^{1,2}, Sylvain Lobry¹, Géraldine Duthé², Laurent Wendling¹, Valérie Golaz^{2,3} ¹LIPADE, Université Paris Cité, Paris ²INED, Aubervilliers ³Aix-Marseille Univ., IRD, LPED, Marseille

Context

Linking environmental and demographic data

- Demographic and Health Survey Program [1] provide: Little documented impact of environmental change in demographic studies.
- Scarce demographic and environmental data in sub-Saharan countries.
- Large amount of Sentinel images with a high refresh rate that allows to monitor environmental change.
- Individual and household demographic data (health, nutrition, wealth...) with some contextual environmental data (rainfall, NDVI...)
- A finer land classification scheme provides a richer analysis of the link between environment and population.

Local Climate Zones

- 17 Local Climate Zone (LCZ) classes based on properties of surface structures [2]
- **So2Sat** dataset available for training deep learning models [3]: 42 labeled cities mainly in Europe, Estern Asia and Americas. 400,673 pairs of Sentinel-1/2 images patches (320mx320m).

Semi Supervised Domain Adaptation (s-SSDA) using seasonal variations in sub-Saharan countries

Few sub-Saharan cities in **So2Sat** → **Ground truth seldom available**

Spatial variations

Reduce domain gap between training regions and sub-Saharan Countries (urban and rural).

Seasonal variations

- > High seasonal variations with wet and dry seasons. A given region can:
 - Have a different label for each season.
 - Be visually different while keeping the same label.
- How to learn both LCZ classification and seasonal variations?
 - \rightarrow Supervised learning and self-supervised **contrastive learning** (SimCLR [4], SeCo[5]).
 - \rightarrow Creation of a dataset : 2x250k patches over regions of interest of Burkina Faso for each season.
- → Temporal regularization using a first order Markov process

Burkina Faso MIS, 2017-2018 [6]

Objective: to provide demographic and malaria related health data.

• Households are sampled and malaria prevalence for 6-59 months old children is representative at regional level.

- 245 Enumeration Zones (EZs) 6322 households.
- Malaria rapid tests (15 minutes) + lab confirmation
- Malaria rate for one EZ is the proportion of positive 6-59 months old children

Linking LCZs to Enumeration Zones

EZs' centroids geo-locations are provided in MIS with an offset (0-10 km): We associate geo-locations to small areas (640x640m), intentionnaly focused on the centroid [7].

Characterizing the environment

We group EZs in clusters according to their LCZ distributions. Clusters represent different types of environment:

- Cluster 1: Bush/scrub and scattered trees (very rural).
- Cluster 2: Bush/scrub, sparsely built and low plants (rural).
- Cluster 3: Sparsely built, compact low-rise, open low-rise, bush/scrub (between rural and urban).

Cluster 4: Compact low-rise and urban classes (very urban)

Linking malaria to Local Climate Zones

 \rightarrow Differences in malaria rates in both urban and rural clusters.

Conclusion and perspectives

 \rightarrow Training strategy for mapping sub-Saharan Countries.

 \rightarrow Differenciation of several environmental structures according to their

malaria rates.

 \rightarrow Next step: Applying s-SSDA to Madagascar and linking LCZs to mortality data in Antananativo.

This work was performed using HPC resources from GENCI-IDRIS (Grant 2021-AD011013527).

References

[1] https://dhsprogram.com/

[2] Stewart and Oke, Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society, 93(12), 1879-1900, 2012 [3] Zhu et al., "So2Sat LCZ42: A Benchmark Data Set for the Classification of Global Local ClimateZones", IEEE GRSS Magazine, vol. 8, pp. 76–89, 2020. [4] Chen et al., "A Simple Framework for Contrastive Learning of Visual Representations", Proceedings of the 37th ICML, vol. 119, pp. 1597–1607, 2020. [5] Mañas et al., "Seasonal Contrast: Unsupervised Pre-Training From Uncurated Remote Sensing Data", Proceedings of ICCV, pp. 9414–9423, 2021. [6] INSD et al., "Enquête sur les indicateurs du paludisme au Burkina Faso", 2018, https://dhsprogram.com/pubs/pdf/MIS32/MIS32.pdf [7] Grace et al., "Integrating Environmental Context into DHS Analysis While Protecting Participant Confidentiality: A New Remote Sensing Method", Population and Development Review, pp. 197-218, 2019.

