

Explaining Predictive Scheduling in Cloud

Muhammad Fahimullah¹, Rohit Gupta², Shohreh Ahvar¹, and Maria Trocan¹ ¹Institut Supérieur d'Électronique de Paris ISEP, Paris, France muhammad.fahimullah@ext.isep.fr,shohreh.ahvar,maria.trocan@isep.fr ² MorningStar India pvt Itd, Navi, Mumbai bindasrohit161@gmail.com

Problem Definition and Motivation

Machine learning-based techniques require complete data to produce better prediction results. However, in practice, it may happen that the data is incomplete and the data with more missing attribute values can negatively affect the outcome of the predictions [1]. Therefore, interpolation of missing attribute values is crucial for better predictions. Interpolating missing attribute values with existing methods results in extensive computational time [2]. Therefore, reducing the computational time and achieving acceptable accuracy is one of the major issues.

Dataset

Contribution

> Using SHapley Additive exPlanations (SHAP) for model explanation and extracting important features [4]. Furthermore, using K-Nearest Neighbor (KNN) and SHAP explanations for interpolation of missing values to reduce computational time. Finally, using Light Gradient Boosting Machine (LightGBM) model for predicting CPU resources with the interpolated dataset to achieve acceptable accuracy.

Work Flow of Experiments

- > We used a publicly available dataset from Delft University of technology GWA-T-12 Bitbrains (tudelft.nl) that provides the performance matrices of VM such as CPU cores, CPU capacity provisioned, CPU usage, memory provisioned (memory requested), memory usage, disk read throughput, disk write throughput, network received throughput and network transmitted throughput [3].
- > We considered only the Rnd traces of the dataset which is 500 VMs

Experimental Results

Actual Percentage of Null values K-nearest neighbors		RMSE: 805.15 Test Data Accuracy: 0.9396								
		10 %			30 %			50 %		
		K=3	K=5	K =7	K=3	K=5	K =7	K =3	K=5	K =7
KNN	RMSE:	851.33	856.07	869.78	966.59	952.73	975.49	1042.74	1022.83	1074.18
	Accuracy:	0.9324	0.9317	0.9295	0.9129	0.9154	0.91136	0.8987	0.9025	0.8925
	Computational time:	1h 9min 26s	1h 16min 41s	1h 14min 14s	3h 15min 58s	3h 19min 58s	3h 14min 20s	4h 7min 54s	4h 20min 11s	4h 38min 24
KNN with Most	RMSE:	907.00	901.40	906.34	1044.82	1095.30	1129.89	1159.38	1169.75	1189.46
	Accuracy	0 9233	0.9243	0.9234	0.8983	0.8882	0.8810	0.8748	0.8725	0.8682

Results

Analysis

[4] Lundberg, S. & Lee, S. A unified approach to interpreting model predictions. Proceedings Of The 31st International Conference On Neural Information Processing Systems. pp. 4768-4777 (2017)

[5] Muhammad Fahimullah, Rohit Gupta, Shohreh Ahvar and Maria Trocan: Explaining Predictive Scheduling in Cloud. In ACIIDS, Ho Chi Minh City, Vietnam, 2022.